Introduction to spectral theory of unbounded operators.

H. Najar

Dep. Mathematics. Taibah University
Dep. Mathematics. F.S. Monastir University. Tunisia
Laboratoire de recherche: Algèbre Géométrie et Théorie Spectrale : LR11ES53.
Email: hatemnajar@yahoo.fr

Definition

A Banach space \mathcal{A} is a **Banach algebra** if there exists a multiplication on \mathcal{A} such that \mathcal{A} is an algebra with

1. $\forall x, y \in \mathcal{A} : \| xy \| \leq \| x \| \cdot \| y \|.$

2. It has an identity $e \in \mathcal{A}$ i.e $\forall x \in \mathcal{A}; \ x = ex = xe$, suppose that $\| e \| = 1$.

A Banach algebra is a Banach \star-algebra, (**algebra**) if there exists an involution $f : \mathcal{A} \to \mathcal{A}$ $\forall x, y \in \mathcal{A}, \alpha \in \mathbb{C}, \ f(x + y) = f(x) + f(y), \ f(xy) = f(y)f(x), \ f(\alpha x) = \bar{\alpha}f(x), \text{ and } f^2(x) = x.$
Definition

A *algebra is called a \mathbb{C}^*-algebra if we have

$$\forall x \in \mathcal{A}, \| f(x)x \| = \| x^*x \| = \| x \|^2.$$ \hspace{1cm} (1)

Remark

Equation (1), says \mathbb{C}^-identity, is equivalent to*

$$\forall x \in \mathcal{A}; \| x^* \| = \| x \|.$$
Example:

1. For any space X, the bounded linear operators $\mathcal{B}(X)$, form a Banach algebra with identity 1_X.

2. For any Hilbert space \mathcal{H}, $\mathcal{B}(\mathcal{H})$ is a \mathbb{C}^*-algebra when it is equipped with the adjoint map

$$\ast : H \in \mathcal{B}(\mathcal{H}) \mapsto H^* \in \mathcal{B}(\mathcal{H})$$
Duality

If X and Y are normed linear spaces and $T : X \to Y$, then we get a natural map $T^* : Y^* \to X^*$ by

$$T^* f(x) = f(Tx), \quad \forall f \in Y^*, x \in X.$$

In particular, if $T \in B(X, Y)$, then $T^* \in B(Y^*, X^*)$. In fact,

$$\|T^*\|_{B(Y^*, X^*)} = \|T\|_{B(X,Y)}.$$

To prove this, note that

$$|T^* f(x)| = |f(Tx)| \leq \|f\| \cdot \|T\| \cdot \|x\|.$$

Therefore $\|T^* f\| \leq \|f\| \cdot \|T\|$, so T^* is indeed bounded, with

$$\|T^*\| \leq \|T\|.$$
Also, given any \(y \in Y \), we can find \(g \in Y^* \) such that \(|g(y)| = \|y\| \), \(\|g\| = 1 \). Applying this with \(y = T x \) (\(x \in X \) arbitrary), gives

\[
\|T x\| = |g(T x)| = |T^* g x| \leq \|T^*\| \cdot \|g\| \cdot \|x\| = \|T^*\| \|x\|.
\]

This shows that

\[
\|T\| \leq \|T^*\|.
\]

Note that if \(T \in B(X, Y) \), \(U \in B(Y, Z) \), then

\[
(UT)^* = T^* U^*.
\]
Let X, Y be Hilbert spaces. Let $T \in \mathcal{B}(X, Y)$ be a bounded linear transformation.

$$\| T \| = \sup \{ \| Ah \|_Y : \| h \|_X \leq 1 \}.$$

Then the norm of T satisfies:

$$\| T \|^2 = \| T^* \|^2 = \| T^* T \|$$

where T^* denotes the adjoint of T. Indeed Let $h \in X$ such that $\| h \|_X \leq 1$. Then:

$$\| Th \|_Y^2 = \langle Ah, Ah \rangle_Y = \langle T^* Th, h \rangle_X \leq \| T^* Th \|_X \| h \|_X (Cauchy – Schwarz Inequality) \leq \| T^* T \| \| h \|_X^2 \leq \| T^* \| \| T \| \ $$
it follows that

\[\| T \| ^2 \leq \| T^* T \| \leq \| T^* \| \| X \|. \]

That is,

\[\| T \| \leq \| T^* \|. \]

By substituting \(T^* \) for \(T \), and using \(T^{**} = T \) from [Double Adjoint is Itself], the reverse inequality is obtained. Hence

\[\| T \| ^2 = \| T^* T \| = \| T^* \|^2 . \]
Examples

Example 1: For any compact Hausdorff space S;

$$\mathcal{C}(S) = \{ f : S \rightarrow \mathbb{C} | f \text{ continuous} \},$$

equipped with the norm

$$\| f \|_{\infty} = \sup_{x \in S} | f(x) |$$

is a commutative Banach algebra with identity $f = 1$, the involution

$$f^*(x) \equiv \overline{f(x)}$$

transforms it on a \mathbb{C}^*-algebra.
Example 2: The analytic functions

$$f : D^1 = \{z \in \mathbb{C}; |z| < 1\} \rightarrow \mathbb{C}$$

with norm

$$\| f \|_{\infty} = \sup_{z \in D} |f(z)|,$$

the involution: $$f(z) \mapsto \overline{f(z)}$$

form a commutative Banach algebra, but not a $$\mathbb{C}^*$$-algebra. With $$f(z) = e^{iz}$$; we have

$$\| f \|_{\infty}^2 = e^2 \neq \| f^* f \|_{\infty} = 1.$$
Definition

For a Banach algebra \mathcal{A} with identity $1_\mathcal{A}$ we define

1. The resolvent set

$$\varrho_\mathcal{A}(x) = \{\lambda \in \mathbb{C} | x - \lambda 1_\mathcal{A} \text{ Has two sided bounded inverse}\}$$

2. The spectrum of $x \in \mathcal{A}$

$$\sigma_\mathcal{A}(x) = \mathbb{C} \setminus \varrho_\mathcal{A}(x).$$

3. We call the inverse of $x - \lambda 1_\mathcal{A}$, the resolvent and denote as

$$R_\lambda(x) = (x - \lambda 1_\mathcal{A}) = \frac{1}{x - \lambda 1_\mathcal{A}}.$$
First resolvent formula

Lemma

For any $\lambda, \nu \in \varrho(x)$.

\[
R_\lambda(x) - R_\nu(x) = (\lambda - \nu)R_\lambda(x)R_\nu(x) = (\lambda - \nu)R_\nu(x)R_\lambda(x).
\]

Proof: Multiply both sides with $x - \lambda \mathbb{1}_A$ or $x - \nu \mathbb{1}_A$.

H. Najar
Introduction to spectral theory of unbounded operators.
Theorem

Let A be a Banach algebra with identity and $x, y \in A$ with x invertible and $\|x^{-1}y\| < 1$, then $x - y$ is invertible,

$$(x - y)^{-1} = \sum_{n=0}^{\infty} (x^{-1}y)^n x^{-1},$$

the series being absolutely convergent and

$$\|(x - y)^{-1}\| \leq \|x^{-1}\|/(1 - \|x^{-1}y\|).$$
Proof:

\[\| \sum_{n=0}^{\infty} (x^{-1}y)^n x^{-1} \| \leq \|x^{-1}\| \sum_{n=0}^{\infty} \|x^{-1}y\|^n \]
\[\leq \|x^{-1}\|/(1 - \|x^{-1}y\|), \]

so the sum converges absolutely and the norm bound holds. Also

\[\sum_{n=0}^{\infty} (x^{-1}y)^n x^{-1}(x - y) = \sum_{n=0}^{\infty} (x^{-1}y)^n - \sum_{n=0}^{\infty} (x^{-1}y)^{n+1} = 1X, \]

and similarly for the product in the reverse order.
Remark

If f is an analytic function, i.e. f can be represented by a convergent power series, $f(x) = \sum_{n=0}^{\infty} a_n x^n$, we can define $f(T) = \sum_{n=0}^{\infty} a_n T^n$ (which is defined since $B(X)$ is Banach).
Proposition

Let X be a Banach space, $T \in B(X)$ with $\|T\| < 1$. Then $(I - T)^{-1} \in B(X)$ and $(I - T)^{-1} = \sum_{n=0}^{\infty} T^n$ (the Neumann series) in $B(X)$.

proof Let $S_k = \sum_{n=0}^{k} T^n$. Then, for $k < \ell$,

$$\|S_\ell - S_k\| = \left\| \sum_{k < n \leq \ell} T^n \right\| \leq \sum_{k < n \leq \ell} \|T^n\| \leq \sum_{k < n \leq \ell} \|T\|^n \leq \sum_{n=k+1}^{\infty} \|T\|^n \xrightarrow{k \to \infty} 0$$

Hence, $\{S_k\}$ is Cauchy in $B(X)$, so convergent. Let $S = \lim_{k \to \infty} S_k$ in $B(X)$.

H. Najar
Introduction to spectral theory of unbounded operators.
\[
(I - T) S_k x = \sum_{n=0}^{k} (T^n - T^{n+1}) x = x - T^{k+1} x \xrightarrow{k \to \infty} x
\]

since \(\| T^{k+1} x \| \leq \| T \|^{k+1} \| x \| \). On the other hand \((I - T) S_k x \to (I - T) S x\) as \(k \to \infty\). Hence,

\[
S = (I - T)^{-1}.
\]
Proposition

Let $T \in B(X)$. Then $\rho(T) \subseteq \mathbb{C}$ is an open set, i.e. $\sigma(T) = \mathbb{C} \setminus \rho(T)$ is closed, and the resolvent function

$$\varrho(T) \ni \lambda \mapsto R_\lambda(T) \in B(X)$$

is a complex analytic map from $\rho(T)$ to $B(X)$ with

$$\|R_\lambda(T)\| \leq \frac{1}{d(\lambda, \sigma(T))},$$

i.e. for all $\lambda_0 \in \rho(T)$, there exists $r > 0$ such that

$$R_\lambda(T) = \sum_{n=0}^{\infty} a_n (\lambda - \lambda_0)^n T^n$$

for all $\lambda \in B_r(\lambda_0)$.
Proof: Use that \((I - T)^{-1} = \sum_{n=0}^{\infty} T^n\) if \(\|T\| < 1\) and

\[
T - (\lambda - \mu)I = (T - \lambda I)(I - \mu R_\lambda(T)) = (T - \lambda I)S(\mu).
\]

Then \(S(\mu)\) is invertible if \(|\mu| \|R_\lambda(T)\| < 1\). Hence,

\[
R_{\lambda - \mu}(T) = S(\mu)^{-1}R_\lambda(T) = \sum_{k=0}^{\infty} \mu^k R_\lambda(T)^{k+1}.
\]
Proposition

Let X, Y be Banach spaces. Then the set of invertible operators in $B(X, Y)$ is an open set. If $X \neq 0$ and $Y \neq 0$, then for $S, T \in B(X)$, T invertible and $\|S - T\| < \|T^{-1}\|^{-1}$ implies S is invertible.

proof: Let $R = T - S$. Then $S = T(I - T^{-1}R) = (I - RT^{-1})T$ where $\|T^{-1}R\| < 1$ and $\|RT^{-1}\| < 1$.
Important implication of Neumann series Theorem

1. \(\{ x \in \mathcal{A} | 0 \in \varrho(x) \} \) is open.
2. \(\forall x \in \mathcal{A}; \varrho(x) \) is an open subset of \(\mathbb{C} \), so \(\sigma(x) \) is a closed set.
3. \(\forall x \in \mathcal{A}, \) the resolvent

\[
\lambda \mapsto R_\lambda(x) = (x - \lambda 1_\mathcal{A})^{-1}
\]

is an \(\mathcal{A} \)-valued analytic function. In particular

\[
\lim_{\lambda \to \lambda_0} \frac{R_\lambda(x) - R_{\lambda_0}(x)}{\lambda - \lambda_0} = R_{\lambda_0}^2(x).
\]

4. \(\forall f \in \mathcal{A}^* : \varrho(x) \ni \lambda \mapsto f(R_\lambda(x)) \in \mathbb{C} \) is analytic.

4. \(\forall x \in \mathcal{A}, \sigma(A) \neq \emptyset \) and it is a compact subset of the disc of radius \(\| x \| \).
Definition

Let Ω be an open set of \mathbb{C}, and \mathcal{A} is a Banach space. Let $f : \Omega \rightarrow \mathcal{A}$. We say that f is analytic in Ω if for any $\lambda_0 \in \Omega$

$$\lim_{\lambda \to \lambda_0} \frac{f(\lambda) - f(\lambda_0)}{\lambda - \lambda_0} = f'(\lambda_0),$$

exists. It is equivalent to $\varphi \circ f : \mathbb{C} \rightarrow \mathbb{C}$ is analytic for any $\varphi \in \mathcal{A}'$.
Suppose that $\sigma(x) = \emptyset$, so $\rho(x) = \mathbb{C}$, we conclude that $R_\lambda(x)$ is an entire function with value in \mathcal{A}. For $|\lambda| > \|x\|$,

$$R_\lambda(x) = -\sum_{n=0}^{+\infty} \frac{x^n}{\lambda^{n+1}}.$$

So

$$\|R_\lambda(x)\| \leq \frac{1}{|\lambda| - \|x\|}.$$

$R_\lambda(x)$ is a bounded and entire function, so by Liouville theorem, we deduce that $R_\lambda(x)$ is constant on \mathbb{C}. As

$$\lim_{|\lambda| \to \infty} R_\lambda(x) = 0.$$

We get $R_\lambda(x) = 0, \forall \lambda \in \mathbb{C}$, which is absurd.
Remark

The fact that the spectrum of an element of A is non empty it is a generalization of the fact that any matrix of $M_n(\mathbb{C})$ has at least one eigenvalue.
Spectral radius formula

Theorem

∀x ∈ A

1. \(\lim_{n \to +\infty} \| x^n \|^{1/n} \) exists and equal \(r(x) \).

2. \(r(x) = \sup\{ |\lambda| \mid \lambda \in \sigma(x) \} \).
Remark

An element of an algebra A is invertible or not is a property which is purely algebraic. So the spectrum and the spectral radius of x depend only on the algebraic structure of A and not of the metric or the topology, but the limit in the last theorem depends on the properties of the metric of A. It is one of the remarkable aspects of the theorem, which affirms the correspondence of two quantities with different origins.
Remark

The algebra A could be a subalgebra of another Banach algebra B. So it is possible for an $x \in A$ to be non invertible in A and invertible in B. So the spectrum of x depends on the algebra. If we note by $\sigma_A(x)$ (resp. $\sigma_B(x)$) the spectrum of x relatively to A (resp. B), so $\sigma_A(x) \subset \sigma_B(x)$. The spectral radius is the same in A and B.

Proof:

1. Set $a_n = Ln\|x^n\|$, then

$$\forall n, m \in \mathbb{N}; a_{n+m} \leq a_n + a_m.$$

Fix $k \in \mathbb{N}$ and write $n = mk + r; 0 \leq r \leq k - 1$

$$a_n \leq ma_k + \max_{0 \leq r \leq k-1} a_r, \Rightarrow \limsup_{n \to \infty} \frac{a_n}{n} \leq \frac{a_k}{k}$$

$$\Rightarrow \limsup_{n \to \infty} \frac{a_n}{n} \leq \inf_{k} \frac{a_k}{k} \leq \liminf_{n \to -\infty} \frac{a_n}{n}.$$

2. Let α be the limit of $\|x^n\|^{\frac{1}{n}}$. Let $\lambda \in \sigma(x)$, so $\lambda^n \in \sigma(x^n)$ so

$$|\lambda^n| \leq \|x^n\|.$$

We get that $r(x) = \sup_{\lambda \in \sigma(x)} |\lambda| \leq \alpha$.

H. Najar

Introduction to spectral theory of unbounded operators.
The opposite inequality is based on the theory of holomorphic functions and entire series. Let $\Omega = D(0, \frac{1}{r(x)})$, if $r(x) = 0, \Omega = \mathbb{C}$. Consider $f : \Omega \to A$ defined $f(0) = 0$ and

$$f(\lambda) = R_{1/\lambda}(x), \quad \lambda \in \Omega \setminus \{0\}.$$

Using the properties of the resolvent we can write that for $0 < |\lambda| < \frac{1}{\|x\|}$

$$f(\lambda) = -\sum_{n=0}^{+\infty} \lambda^{n+1} x^n.$$

Let R be the radius of convergence of the power series $R \geq d(0, \Omega^c) = \frac{1}{r(x)}$. Using Hadamard formula

$$\frac{1}{R} = \limsup_{n \to +\infty} \|x^n\|^{\frac{1}{n}},$$
So finally

$$\limsup_{n \to +\infty} \| x^n \| \frac{1}{n} \leq r(x).$$
Application: Volterra Integral Kernels

Let $K : [0, 1] \times [0, 1] \to \mathbb{C}$, continuous $V_K : C([0, 1]) \to C([0, 1])$

$$f \mapsto \int_0^t K(t, s)f(s)ds.$$

We have $\| V_K \|_\infty \leq \| K \|_\infty \| f \|_\infty$ So $V_K \in B(C([0, 1]))$.

$$(V^n_K f)(t) = \int_{0 \leq s_1 \leq \cdots \leq s_n \leq t} K(t, s_n)K(s_n, s_{n-1}) \cdots K(s_2, s_1)f(s_1)ds_1 \cdots ds_n.$$

$$\| V^n_K f \|_\infty \leq \| K \|_\infty^n \| f \|_\infty \cdot \sup_{t \in [0,1]} Vol\{ (s_1, \cdots, s_n) \mid 0 \leq s_1 \leq \cdots \leq t \} \leq \| K \|_\infty^n / n! \cdot \| f \|_\infty.$$

So $r(V_K) = \lim_{n \to \infty} \| V^n_K \|_1^{1/n} \leq \lim_{n \to \infty} \| K \|_\infty \| K \|_\infty^{1/n} = 0$. and $\sigma(V_K) = \{0\}$. (Hint: $Ln(n!) \approx nLn(n)$)
How we can define $f(x)$ for a large class of functions f and (un)bounded linear operator x?

1. Polynomial functional calculus.
3. Continuous functional calculus.
Let \(\mathcal{A} \) be a Banach algebra with identity and
\[
P(t) = a_n t^n + a_{n-1} t^{n-1} + \cdots + a_0, \quad a_j \in \mathbb{C} \text{ a polynomial.}
\]
If \(x \in \mathcal{A} \), then
\[
P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0 \in \mathcal{A}.
\]

Spectral mapping

Theorem

\[
\forall x \in \mathcal{A} : \quad \sigma(P(x)) = P(\sigma(x)) = \{ P(\lambda) \in \mathbb{C} ; \lambda \in \sigma(x) \}.
\]
Lemma

Let \(x_1, \cdots, x_n \in A \) be mutually committing, then

\[
y = x_1 \cdots x_n \text{ invertible} \iff x_1, \cdots, x_n \text{ are each invertible}
\]

Proof:

1. \[\Rightarrow x_1(x_2 \cdots x_n)y^{-1} = yy^{-1} = 1_A \]
 \[
y^{-1}(x_1 \cdot x_2 \cdots x_n) = 1_A = y^{-1}(x_2 \cdots x_n)x_1 = y^{-1}(x_1 \cdots x_n) = y^{-1}y = 1_A \]
 So \(x_1 \) has left and right inverses. So it is invertible and are the same.

2. \[\Leftarrow y^{-1} = x_n^{-1} \cdots x_1^{-1}. \]
Proof of the spectral mapping

Let

$$\lambda \in \sigma(P(x)) \iff q(x) = P(x) - \lambda \text{ is not invertible.}$$

$$Q(t) = (t - \mu_1) \cdots (t - \mu_n).$$ As \(x - \mu_i \) and \(x - \mu_j \) commute for any \(i, j \), applying the last Lemma we get

$$\lambda \in \sigma(P(x)) \iff \exists j, \mu_j \in \sigma(x) \iff \lambda \in P(\sigma(x)).$$
Let \(f : \mathbb{C} \to \mathbb{C} \), an entire function \(f(t) = \sum_{n=0}^{\infty} a_n t^n \). For \(x \in \mathcal{A} \),

\[
f(x) = \sum_{n=0}^{\infty} a_n x^n \in \mathcal{A}.
\]

(2)

More general function \(f : B(0, r) \to \mathbb{C} \) analytic with \(r > r(x) \). Using Cauchy integral formula we write

\[
f(x) = \frac{1}{2\pi i} \oint_{|\lambda|=r} f(\lambda)(\lambda - x)^{-1} d\lambda
\]
Definition

Let $x \in \mathcal{A}$ and $G \subset \mathbb{C}$ open connected domain such that $\sigma(x) \subset G$. Let $f : G \to \mathbb{C}$ analytic and $\Gamma \subset G \cap \varrho(x)$ a contour. We set

$$f(x) = \frac{1}{2\pi i} \oint_{\Gamma} f(\lambda)(\lambda - x)^{-1} d\lambda \in \mathcal{A}.$$ \hspace{1cm} (3)
Proposition

The equation (3) define an application from the algebra of analytic functions on $G \supset \sigma(x)$ to A. This map is linear and satisfies for $f, g : G \to \mathbb{C}$ analytic on $G \supset \sigma(x)$ and Γ_f, Γ_g admissible contours s.t $\Gamma_f \cap \Gamma_g = \emptyset$.

$$f(x)g(x) = (fg)(x).$$

$$f(x) = \frac{1}{2\pi i} \oint_{\Gamma_f} f(\lambda)(\lambda-x)^{-1} d\lambda, \quad g(x) = \frac{1}{2\pi i} \oint_{\Gamma_g} g(\mu)(\mu-x)^{-1} d\mu.$$
\[
\begin{align*}
\text{f}(x)g(x) &= \frac{1}{(2\pi i)^2} \oint_{\Gamma_f} \oint_{\Gamma_g} f(\lambda)g(\mu)(\lambda - x)^{-1}(\mu - x)^{-1} d\lambda d\mu \\
&= \frac{1}{(2\pi i)^2} \oint_{\Gamma_g} \left(\oint_{\Gamma_f} \frac{1}{\lambda - \mu} f(\lambda) d\lambda \right) g(\mu)(\mu - x)^{-1} d\mu \\
&\quad - \frac{1}{(2\pi i)^2} \oint_{\Gamma_f} \left(\oint_{\Gamma_g} \frac{1}{\lambda - \mu} g(\mu) d\mu \right) f(\lambda)(\lambda - x)^{-1} d\lambda \\
&= \frac{1}{2\pi i} \oint_{\Gamma_f} (\lambda - x)^{-1} g(\lambda) f(\lambda) d\lambda = (fg)(x).
\end{align*}
\]

So we get an algebraic homomorphism.
Theorem

∀x ∈ A and analytic f : G → C on domain G ⊃ σ(x).

\[\sigma(f(x)) = f(\sigma(x)) = \{ f(\lambda) | \lambda \in \sigma(x) \} . \]
Proof

If $\mu \notin f(\sigma(x))$, then $G \ni \lambda \to g(\lambda) = (f(\lambda) - \mu)^{-1}$ is analytic. So $g(x)$ is the inverse of $f(x) - \mu$, so $\mu \notin \sigma(f(x))$. If $\mu \in f(\sigma(x))$; then $\exists \lambda \in \sigma(x); \mu = f(\lambda)$. Then

$$g(z) = \frac{f(z) - f(\lambda)}{z - \lambda},$$

has a false singularity at $z = \lambda$. Hence is analytic on G. So,

$$f(x) - \mu = (x - \lambda)g(x) = g(x)(x - \lambda).$$

So $f(x) - \mu$ is not invertible since $\lambda \in \sigma(x)$ i.e $\mu \in \sigma(f(x))$.

H. Najar

Introduction to spectral theory of unbounded operators.
Some particular elements of a \ast-algebra A

Definition

1. $x \in A$ is normal iff $x^*x = xx^*$.
2. $x \in A$ is self-adjoint iff $x^* = x$.
3. $x \in A$ is positive iff $\exists y \in A; x = yy^*$.
4. $x \in A$ is projection iff $x^2 = x = x^*$.
5. $x \in A$ is unitary iff $x^*x = xx^* = 1_A$.
Introduction to spectral theory of unbounded operators.
Theorem

If \(x \) is normal in \(\mathbb{C}^* \)-algebra \(\mathcal{A} \), then \(r(x) = \| x \| \).

Proof:

\[
\| x^2 \| = \| xx^* \| = \| x \|^2.
\]

By induction \(n \in \mathbb{N}^* \),

\[
\| x^{2n} \| = \| x \|^{2n}.
\]

So,

\[
r(x) = \lim_{n \to \infty} \| x^{2n} \|^{1/2n} = \| x \|.
\]
Remark

The norm of a \mathbb{C}^*-algebra A is uniquely determined by the algebraic structure

$$\| x \|^2 = \| xx^* \| = r(xx^*) = \sup \{| \lambda | ; \lambda \in \sigma(xx^*) \}.$$
Theorem

Let \(x \in \mathcal{A} \).

1. If \(x \) is unitary, then \(\sigma(x) \subset \partial \mathbb{D} \).
2. If \(x \) is self-adjoint, then \(\sigma(x) \subset \mathbb{R} \).

Proof:

Let \(x \in \mathcal{A} \) be an unitary operator, then

\[
\| x \|^2 = \| xx^* \| = \| 1_{\mathcal{A}} \| = 1.
\]

As \(x^{-1} = x^* \), then \(0 \notin \sigma(x) \),

\[
x^{-1} - \lambda^{-1} = x^{-1} \lambda^{-1} (\lambda - x) \forall \lambda \neq 0,
\]

we conclude that

\[
\lambda \in \sigma(x) \iff \lambda^{-1} \in \sigma(x^{-1}).
\]
Let $y = e^{ix} = \sum_{n=0}^{\infty} \frac{i^n}{n!} x^n$. As the involution \ast is a continuous map on \mathcal{A}, then $y^\ast = e^{-ix}$, and

$$y^\ast y = yy^\ast = 1_{\mathcal{A}}.$$

So y is unitary operator and

$$\sigma(y) \subset \partial \mathbb{D}$$

and

$$\sigma(y) = e^{i\sigma(x)} \subset \partial \mathbb{D} \iff \sigma(x) \subset \mathbb{R}.$$
In the following we consider $X, \ Y$ two Hilbert spaces and linear operator $A : \mathcal{D}(A) \subset X \rightarrow Y$. We suppose that $\mathcal{D}(A)$ is dense in X.

Examples: Maximal multiplication operator associated with measurable $f : M \rightarrow \mathbb{C}$ over some measure space (M, μ)

$$\mathcal{D}(M_f) = \{ \psi \in L^2(M, \mu) | M_f \psi = f \psi, \psi \in L^2(M, \mu) \}.$$

Lemma

Suppose that (M, μ) is σ-finite. Then we have equivalence

1. $M_f \in B(L^2(M, \mu))$
2. $f \in L^\infty(M, \mu)$
Proof: ” \iff ”, for all $\psi \in \mathcal{D}(M_f)$:

$$\|M_f\psi\| = \left(\int |f\psi|^2 d\mu \right)^{\frac{1}{2}} \leq \|f\|_{\infty} \cdot \|\psi\|.$$

” \Rightarrow ” As (M, μ) is σ-finite, $\exists (M_n)_n$:

$$M = \bigcup_n M_n, \mu(M_n) < \infty.$$

Suppose that

$$\|M_f\| = \sup\{\|M_f\psi\| | \psi \in \mathcal{D}(M_f), \|\psi\| = 1\} < \infty.$$

Consider $\chi_{n,A} = \chi\{x \in M_n, |f(x)| > A\}, A \in [0, \infty).$
\[A^2 \cdot \mu\{x \in M_n | |f(x)| > A\} \leq \int |f|^2 |\chi_n, A| d\mu \leq \|M_f\|^2 \mu\{x \in M_n | |f(x)| > A\}. \]

This gives that

\[\mu\{x \in M_n | |f(x)| > A\} = 0, \text{ when } A > \|M_f\|, \forall n. \]

\[\Rightarrow f \in L^\infty(M, \mu). \text{ Thus } M_f \text{ is an unbounded operator with } D(M_f) \neq L^2(M, \mu) \text{ in case } f \notin L^\infty(M, \mu). \]
Differential operator on $I = (0, 1)$

$$T_0 : C^1 \to L^2(I), \quad T_0 \psi = -i \psi'$$

$$f_n(x) = x^n, n \in \mathbb{N}, \quad T_0 f_n(x) = -inx^{n-1}, \quad \|T_0 f_n\| = \frac{n\sqrt{2n + 1}}{\sqrt{2(n - 1)}}.$$

$$T_{max} : W^{1,2}(I) \to L^2(I), \quad T_{max} \psi = -i \psi'$$

Here

$$W^{1,2}(I) = \{ \psi : I \to \mathbb{C} | \psi, \psi' \in L^2(I) \}.$$

It is an Hilbert space when equipped by the norm

$$\|\psi\|^2_{W^{1,2}} = \|\psi\|^2_{L^2} + \|\psi'\|^2_{L^2}.$$

Both operators are unbounded. \(T_{max} \) is an extension of \(T_0 \).
Definition

Let $B : \mathcal{D}(B) \to Y$ and $A : \mathcal{D}(A) \to Y$. We say that A is an **extension** of B, if $\mathcal{D}(B) \subset \mathcal{D}(A)$ and $Ax = Bx$ for all $x \in \mathcal{B}$, we write

$$B \subset A.$$
Closed and closable operators

Definition

Let $A : \mathcal{D}(A) \to Y$ be a linear operator on Hilbert spaces X, Y with $\mathcal{D}(A)$ is dense in X

1. We call the **graph** of A the set

 $$\text{Grph}(A) = \{(x, Ax) \in X \times Y; x \in \mathcal{D}(A)\},$$

 and the graph norm of $x \in \mathcal{D}(A)$ is $\|x\|_A = \|(x, Ax)\|_{X \times Y}.$

2. A is said to be **closed** if $\text{Graph}(A)$ is a closed subset of $X \times Y$, with respect to the topology induced by $\|(x, y)\|_{X \times Y}^2 = \|x\|_X + \|y\|_Y.$

3. We call A is **closable** if it has a closed extension. We denote the smallest closed extension of A by $\overline{A}.$
Remark

\(X \times Y \) is an Hilbert space with the scalar product

\[\langle (x, y), (x', y') \rangle_{X \times Y} = \langle x, x' \rangle_X + \langle y, y' \rangle_Y. \]
Lemma

$G \subseteq X \times Y$ is a graph of an operator $A : \mathcal{D}(A) \to Y$ if and only if G is a subspace with the property:

$$(0, y) \in G \Rightarrow y = 0.$$
Proof: \iff Let $(x, y), (x, y') \in G$ as G is a subspace we get that $(0, y - y') \in G \implies y = y'$ so for every $x \in X$, there is at most one $y \in Y$ such that $(x, y) \in G$. So the map $A : D(A) \to Y$ with

$$D = \{x \in X | \exists y \in Y : (x, y) \in G\},$$

we set

$$Ax = y.$$

It is a well defined as linear operator with $\text{Graf}(A) = G$.

H. Najar
Introduction to spectral theory of unbounded operators.
Lemma

Let \((A, \mathcal{D}(A))\) be a linear operator. \(A\) is closable if and only if \(\text{Graph}(A)\) is a graph.

Proof: \(\iff\) Let \(B : \mathcal{D}(B) \to Y\), with

\[
\mathcal{D}(B) = \{x \in X; \exists y \in Y : (x, y) \in \text{Graph}(A)\},
\]

we define

\[Bx = y.\]

It is a linear operator with \(\text{Graph}(B) = \overline{\text{Graph}(A)}\) and \(\text{Graph}(A) \subset \text{Graph}(B)\), and hence \(\mathcal{D}(A) \subset \mathcal{D}(B)\).
Let $B : \mathcal{D}(B) \to Y$ be a closed extension of A. If $(0, y) \in \text{Graph}(A)$, then $(0, y) \in \text{Graph}(B)$; i.e $y = 0$.
Characterization of closed operators

Theorem

For a linear operator $A : \mathcal{D}(A) \to Y$ densely defined on $\mathcal{D}(A) \subset X$ the following properties are equivalent:

1. A is closed.
2. $(\mathcal{D}(A), \| \cdot \|_A)$ is complete.
3. If $(x_n)_n \subset \mathcal{D}(A)$ with x_n converges to x and Ax_n converges to y then $x \in \mathcal{D}(A)$ and $Ax = y$.

H. Najar

Introduction to spectral theory of unbounded operators.
Proof: (1) ⇒ (3) Let \((x_n) \subset D(A)\) with \(x_n\) converges to \(x\) and \(Ax_n\) converges to \(y\). Then \((x_n, Ax_n) \in Graph(A)\), with

\[
\| (x_n, Ax_n) - (x, y) \|_{X \times Y} \to 0.
\]

Thus \((x, y) \in \overline{Graph(A)} = Graph(A)\), i.e. \(x \in D(A)\) and \(Ax = y\).

(3) ⇒ (2) Let \((x_n) \subset D(A)\) be a Cauchy sequence w.r.t. \(\| \cdot \|_A\). Then \((x_n)\) is a Cauchy sequence w.r.t. \(\| \cdot \|_X\) and \((Ax_n)\) is a Cauchy sequence w.r.t. \(\| \cdot \|_Y\). Completeness of \(X\) and \(Y\) imply:

\[
\exists x \in X, y \in Y \text{ such that }
\| x_n - x \|_X \to 0, \| Ax_n - y \|_Y \to 0.
\]

Thus \(x \in D(A)\) and \(y = Ax\) and

\[
\| (x_n, Ax_n) - (x, y) \|_{X \times Y} \to 0.
\]
(2) \(\Rightarrow\) (1) Let \((x_n, Ax_n) \in Graph(A)\) converges to \((x, y)\). Then \((x_n) \subset D(A)\) is a Cauchy sequence w.r.t. \(\|\cdot\|_A\), and hence

\[
\exists x' \in D(A) : \|x' - x_n\|_A \to 0, x_n \to x', Ax_n = Ax'.
\]

Uniqueness of the limit in \(X\) and \(Y\) yields that \(x = x'\) and \(Ax' = y\).
Example 1: Dirac Delta function on
\(X = L^2((-1, 1)), \mathcal{D}(A) = C((-1, 1)) \),

\[
(A\psi)(x) = \psi(0).
\]

This operator is not closable as there exists \((\psi_n) \subset C((-1, 1))\) with \(\psi_n(0) = 1\) and \(\|\psi_n\| \to 0\) and \(A\psi_n = 1 \neq 0\).
Differentiation operators on $I \subset \mathbb{R}$

Example 1:

\[
T_{\text{max}} : W^{1,2}(I) \to L^2(I), \quad T_{\text{max}} \psi = -i \psi'
\]

Here

\[
W^{1,2}(I) = \{ \psi : I \to \mathbb{C} | \psi, \psi' \in L^2(I) \}.
\]

T_{max} is closed since $\| \cdot \|_{T_{\text{max}}} = \| \cdot \|_{W^{1,2}}$ and $W^{1,2}(I)$ is a Hilbert space with norm $\| \cdot \|_{W^{1,2}}$.

\[
T_0 : C^1 \to L^2(I)
\]

T_0 is closable.
Remark

The closure \overline{A} of a closable operator $A : \mathcal{D}(A) \to Y$ is uniquely defined through

$$\mathcal{D}(\overline{A}) = \{ x \in X | \exists (x_n) \subset \mathcal{D}(A) : x_n \to x; (Ax_n) \text{ converges} \}$$

$$\overline{A}x = \lim_{n \to \infty} Ax_n.$$
Definition

Let $A : \mathcal{D}(A) \subset X \to Y$ be a **densely** defined linear operator on Hilbert spaces X, Y. The operator $A^* : \mathcal{D}(A^*) \to X$, with

$$\mathcal{D}(A^*) = \{y \in Y|\exists y^* \in X : \langle Ax, y \rangle_Y = \langle x, y^* \rangle_X, \forall x \in \mathcal{D}(A)\},$$

$$A^*y = y^*,$$

is called the adjoint of A.
Example: Differential operators T_0 and T_{max}

Let $\psi \in C_c^\infty(I)$ and $\varphi \in W^{1,2}(I)$. Then,

$$\langle T_0 \psi, \varphi \rangle = \int_a^b -i \psi(x) \cdot \overline{\varphi(x)} \, dx = \left[-i \psi(x) \cdot \overline{\varphi(x)} \right]_a^b$$

$$= \int_a^b \psi(x) \cdot -i \varphi'(x) \, dx = \langle \psi, T_{max} \varphi \rangle.$$ \hspace{1cm} (4) (5)

Thus

$$T_0^* = T_{max}.$$
It is possible to describe the adjoint using the graph. Let

\[J : X \times Y \rightarrow Y \times X \]

\[(x, y) \mapsto J((x, y)) = (−y, x)\]

\(J\) is an isometric isomorphism.
Lemma

Let $A : \mathcal{D}(A) \to Y$, $B : \mathcal{D}(B) \to Y$ be two operators densely defined on X.

1. $\text{Graph}(A^*) = (J\text{Graph}(A))^\perp = J(\text{Graph}(A)^\perp)$.
2. $B \subset A \Rightarrow A^* \subset B^*$.
Proof:
(1) By definition of A^*

$$
\text{Graph} \ (A^*) = \{(y, z) \in Y \times X | \langle Ax, y \rangle = \langle x, z \rangle, \forall x \in D(A)\}
$$

$$
= \{(y, z) \in Y \times X | \langle (-Ax, x), (y, z) \rangle_{Y \times X} = 0, \forall x \in D(A)\}
$$

$$
= \{(y, z) \in Y \times X | \langle J(v, w), (y, z) \rangle_{Y \times X} = 0, \forall v, w \in \text{Graph}(A)\}
$$

$$
= \left(J(\text{Graph}(A)) \right)^\perp = J(\left(\text{Graph}(A) \right)^\perp).
$$
(2)

\[\text{Graph}(B) \subset \text{Graph}(A) \implies J(\text{Graph}(B)) \subset J(\text{Graph}(A)) \]
\[\implies (J(\text{Graph}(A)))^\perp \subset (J(\text{Graph}(B)))^\perp \]
\[\implies \text{Graph}(B^*) \supset \text{Graph}(A^*). \]
Let $A : \mathcal{D}(A) \to Y$, $\mathcal{D}(A) \subset X$ be a densely defined operator on Hilbert spaces X, Y. Then,

1. A^* is closed.
2. If A admits a closure \overline{A}, then $\overline{A}^* = A^*$.
3. A^* is densely defined if and only if A is closable.
4. If A is closable, then it is closure \overline{A} is $(A^*)^*$.

H. Najar
Introduction to spectral theory of unbounded operators.
Proof:

(1) Since V^\perp is closed for any V, the graph $\text{Graph}(A^*)$ is closed by previous lemma.

(2)

$$\text{Graph}(A^*) = \left(J(\text{Graph}(A)) \right)^\perp = (J(\overline{\text{Graph}(A)}))^\perp = J(\overline{\text{Graph}(A)}) = \overline{J(\text{Graph}(A))} = \text{Graph}(A^*).$$
(3) We have

\[
\overline{\text{Graph}(A)} = \overline{(\text{Graph}(A)^\perp)^\perp} = \overline{(J^{-1}(\text{Graph}(A^*)))^\perp} \quad \text{(by the precedent lemma)}
\]

\[
= \{(x, y) \in X \times Y \mid \langle J^{-1}(z, A^*z), (x, y) \rangle_{X \times Y} = 0, \quad \forall z \in \mathcal{D}(A^*) \}
\]

Thus \((0, y) \in \overline{\text{Graph}(A)} \iff y \in \mathcal{D}(A^*)^\perp.\)

\[
\overline{\text{Graph}(A)} \quad \text{is a graph} \iff \mathcal{D}(A^*) \quad \text{is dense.}
\]
(4) Using (3), we conclude that A^{**} is well defined and

$$\text{Graph}(A^{**}) = (J^{-1}(\text{Graph}(A^*)))^\perp = (J^{-1}J(\text{Graph}(A)^\perp))^\perp = (\text{Graph}(A)^\perp)^\perp = \overline{\text{Graph}(A)}, \ i.e \ \overline{A} = A^{**}.$$
Definition

A densely defined linear operator $A : \mathcal{D}(A) \to X, \mathcal{D}(A) \subset X$ on Hilbert space X is called

1. Symmetric iff $A \subset A^*$.
3. Essentially self adjoint iff A^* is self adjoint.

Remark

*If A is essentially self-adjoint operator then $A \subset A^{**} = A^*$ i.e A is symmetric.*
Theorem

1. Every symmetric operator A is closable with $\overline{A} \subset A^*$

2. Equivalent statements

 1. A is e.s.a. ($A^{**} = A^*$).
 2. $\overline{A} = A^*$.
 3. \overline{A} is self-adjoint, in this case \overline{A} is the unique self adjoint extension of A.

H. Najar

Introduction to spectral theory of unbounded operators.
Proof:

(1) A^* is closed extension of A.
(2) $(1) \Rightarrow (2)$, $\overline{A} = A^{**} = A^*$
(2) $\Rightarrow (3)$: $\overline{A} = A^{**} = \overline{A}^*$
(3) $\Rightarrow (1)$ $A^* = \overline{A}^* = \overline{A} = A^{**}$ (last therem)

If \tilde{A} is a s.a. extension of A, then $\tilde{A} = \tilde{A}^* \subset A^* = \overline{A} \subset \tilde{A} \Rightarrow \tilde{A} = \overline{A}$.
Example: Maximal multiplication operator, with measurable $f : M \rightarrow \mathbb{R}$ over some σ-finite measure space (M, μ)

$$D(M_f) = \{ \psi \in L^2(M, \mu) \mid f\psi L^2(M, \mu) \}$$

$$M_f\psi = f\psi.$$

Let $(x, y) \in Graph(M_f^*)$, $y = M_f^*x$, then for $\psi \in D(M_f)$.

$$| \int x f\psi d\mu | \leq \| y \| \cdot \| \psi \|,$$

so $\psi \mapsto \int x f\psi d\mu = \langle M_f\psi, x \rangle = \langle \psi, y \rangle$ extends uniquely to a bounded functional on $L^2(M, \mu)$, i.e $f\overline{x} \in L^2(M, \mu)$ and $\overline{y} = f\overline{x}$.

Therefore $(x, y) \in Graph(M_f^*) \iff y \in D(M_f)$ and $y = f\overline{x}$. So

$$M_f = M_f^*.$$
Particular case: \(M = \mathbb{R}^d, \mu = \text{Lebesgue measure} f(k) = |k|^2 \), define a self-adjoint operator \(M_f \). The Fourier transformation

\[
\mathcal{F} : L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d)
\]

\[
(\mathcal{F}\psi)(x) = \int_{\mathbb{R}^d} e^{-ik \cdot x} \psi(k) \frac{dk}{(2\pi)^{d/2}}.
\]

Define a unitary transformation with

\[
\mathcal{F} M_f \psi = -\Delta \mathcal{F} \psi,
\]

and \(\mathcal{F}(\mathcal{D}(M_f)) = \mathcal{D}(L) \), the Laplacian

\[
\mathcal{D}(L) = \{ \psi \in L^2(\mathbb{R}^d) | \Delta \psi \in L^2(\mathbb{R}^d) \} = \mathcal{F}\mathcal{D}(M_f).
\]

\[
L \psi = -\Delta \psi.
\]
Remark

Using similar reasoning allows to conclude that all differential operators of the form $\text{Pol}(\nabla)$ are self-adjoint provided $\text{Pol}(ik) \in \mathbb{R}$ for all $k \in \mathbb{R}^d$.
We recall that, $T_0 \psi = -i \psi'$, $\mathcal{D}(T_0) = \mathcal{C}_c^\infty(I)$, and
$\mathcal{D}(T_{\text{max}}) = W^{1,2}(I)$. $T_0 \subset T_{\text{max}} = T_0^*$. So T_0 is a symmetric operator

$$\mathcal{D}(\overline{T_0}) = \{ \psi \in W^{1,2}(I) | \psi(a) = \psi(b) = 0 \} = W_0^{1,2}(I).$$

$$\overline{T_0} \psi = -i \psi',$$

it is not essentially self adjoint.
For $\beta \in [0, 2\pi)$ let
\[
D(T_\beta) = \{ \psi \in W^{1,2}(I) | \psi(b) = e^{i\beta} \psi(a) \}.
\]

Then
\[
T_\beta \psi = -i \psi'.
\]

Then
1. $T_0 \subset T_\beta \subset T_{\text{max}}$
2. $T_\beta \subset T_\beta^*$ i.e T_β symmetric, since $\varphi, \psi \in D(T_\beta)$

\[
\beta \psi, \varphi \rangle = \int_a^b -i\psi'(x)\varphi(x)dx
\]

\[
= \left[-i\psi(x)\varphi(x) \right]^b_a + \int_a^b \psi(x) - i\varphi'(x)dx
\]

\[
= \langle \psi, T_\beta \varphi \rangle.
\]
\[T^*_\beta = T_\beta, \text{ since } \forall \varphi \in \mathcal{D}(T^*_\beta), \psi \in \mathcal{D}(T_\beta) \]

\[
\int_{a}^{b} -i\psi'(x)\varphi(x) \, dx = \langle T_\beta \psi, \varphi \rangle = \langle \psi, T^*_\beta \varphi \rangle \quad (9)
\]

\[
= \int_{a}^{b} \psi(x) - i\varphi'(x) \, dx. \quad (10)
\]

So \(T_0 \) has infinitely many self adjoint extensions.
Theorem

For any densely defined linear operator A on a Hilbert space X.

$$\overline{\text{Ran}A} \oplus \ker A^* = X.$$
Proof: It suffices to prove that $\ker A^*$ is the orthogonal complement of $\text{Ran} A$. Let $u \in \text{Ran} A$ and $v \in \ker A^*$. Then there exists $f \in D(A)$ such that $u = Af$. We compute

$$\langle u, v \rangle = \langle Af, v \rangle = \langle f, A^* v \rangle = 0.$$

and thus $\ker A^* \subseteq (\text{Ran} A)^\perp$. Now let $w \in (\text{Ran} A)^\perp$. For $u = Af \in \text{Ran} A$, we have

$$0 = \langle u, w \rangle = \langle Af, w \rangle = \langle f, A^* w \rangle, \quad \forall f \in D(A).$$

(Notice that $\langle Af, w \rangle = 0$ implies that $w \in D(A^*)$.) As $D(A)$ is dense, it follows that $A^* w = 0$, that is $(\text{Ran} A)^\perp \subseteq \ker A^*$.

H. Najar
Introduction to spectral theory of unbounded operators.
Let $A : \mathcal{D} \rightarrow X$ be a symmetric operator with the property that $\text{Ran}(A) = X$. Then A is selfadjoint.

Proof: As $\mathcal{D}(A) \subset \mathcal{D}(A^*)$, it suffice to show that if $f \in \mathcal{D}(A^*)$ then $f \in \mathcal{D}(A)$.

Let $g = A^* f$. As $\text{rang}(A) = X$, there exists $h \in \mathcal{D}(A)$ so that $g = Ah$.

$$\forall v \in \mathcal{D}(A), \quad \langle Av, f \rangle = \langle v, A^* f \rangle = \langle v, g \rangle = \langle v, Ah \rangle = \langle Av, h \rangle.$$

If $u \in X$ is arbitrary, there exists $v \in \mathcal{D}(A) = X$ such that $u = Av$. Hence we have

$$\langle u, f \rangle = \langle u, h \rangle \quad \forall u \in X.$$

So $f = h \in \mathcal{D}(A)$.

H. Najar

Introduction to spectral theory of unbounded operators.
Let T be a symmetric operator, the following assertions are equivalents

1. T is self-adjoint.
2. T is closed and $\ker(T^* \pm i) = \{0\}$.
3. $\text{Ran}(T \pm i) = X$.
(1) ⇒ (2): Let \(T \) is self-adjoint and \(\varphi \in D(T^*) = D(T) \) such that \(\varphi \in \text{Ker}(T^* \pm i) \). So
\[
\mp i\langle \varphi, \varphi \rangle = \langle \mp i\varphi, \varphi \rangle = \langle T^*\varphi, \varphi \rangle = \langle T\varphi, \varphi \rangle = \langle \varphi, T^*\varphi \rangle = \pm i\langle \varphi, \varphi \rangle.
\]
So \(\varphi = 0 \).

(2) ⇒ (3): Let \(y \in \text{Ran}(T \pm i)^\perp \), then \(\langle (T \pm i)x, y \rangle = 0 \) for any \(x \in D(T) \). So \(y \in D(T^*) \) and \(T^*y = \pm iy \). So
\(y \in \text{Ker}(T^* \mp i) = \{0\} \) so \(\text{Ran}(T \pm i) \) dense in \(X \). Let’s prove that \(\text{Ran}(T \pm i) \) is closed. Indeed for all \(x \in D(T) \).
\[
\| (T \pm i)x \|_2^2 = \| Tx \|_2^2 + \| x \|_2^2,
\]
as \(T \) is symmetric. This yields that if \(x_n \in D(T) \) a sequence such that \((T \pm i)x_n \to y \), so \(x_n \) converges to \(x \). As \(T \) is closed we deduce that \(x \in D(T) \) and \((T \pm i)x = y \). So \(y \in \text{Ran}(T \pm i) \) so \(\text{Ran}(T \pm i) = X \).
(3) ⇒ (1) Let $x \in D(T^*)$, as $Ran(T \pm i) = X$ there exists $y \in D(T)$ such that $(T - i)y = (T^* - i)x$. As $T \subset T^*$, we have $x - y \in D(T^*)$ and $(T^* - i)(x - y) = 0$. So

$$x - y \in ker(T^* - i) = Ran(T + i)^\perp = X^\perp = \{0\}.$$

So $x = y \in D(T)$ and $D(T) = D(T^*)$.
Example 1: Let $X = l^2(\mathbb{N})$, let A be the operator with domain

$$\mathcal{D}(A) = \{ x = (x_n)_{n \in \mathbb{N}} : x_n \neq 0, \text{for finitely many } n \}$$

and

$$Ax := \left(\sum_{i=1}^{\infty} x_i, 0, 0, 0, \cdots \right).$$

Let’s determine A^*. Let e_n be the standard unit vector. Pick $y \in \mathcal{D}(A^*)$, then

$$1 \cdot \overline{y}_1 = \langle Ae_n, y \rangle = \langle e_n, A^* y \rangle = 1 \cdot \overline{(A^* y)_n}, \forall n \in \mathbb{N},$$

this yields that $A^* y = 0$, and we obtain $y_1 = 0$. So for any $y \in \mathcal{D}(A^*)$ we have $y_1 = 0$ and $A^* y = 0$.

H. Najar
Introduction to spectral theory of unbounded operators.
Now consider the linear operator B given by

$$\mathcal{D}(B) = \{(y_n)_n \in l^2(\mathbb{N}) : y_1 = 0\}, \text{By} = 0.$$

Let $y \in \mathcal{D}(B)$,

$$\langle Ax, y \rangle = \langle x, By \rangle \forall x \in \mathcal{D}(A).$$

There for, $y \in \mathcal{D}(A^*)$ and $A^*y = By$. So

$$\mathcal{D}(A^*) = \{(y_n)_n \in l^2(\mathbb{N}) : y_1 = 0\}; A^*y = 0, \forall y \in \mathcal{D}(A^*).$$

Since $\mathcal{D}(A^*)$ is not dense in l^2, the operator A is not closable.
Example 2: Let $X = L^2([0, 1])$, $\mathcal{D}(T_0) = C_\infty^\infty((0, 1))$

$$T_0 f = -f''.$$

By integration by part we see that T_0 is symmetric. Let’s compute for $f \in \mathcal{D}(T_0)$,

$$\langle T_0 f , 1 \rangle = - \int_0^1 f'' 1 = [-f' 1]_0^1 + \int_0^1 f' 1' = 0.$$

So $1 \in \mathcal{D}(T^*)$ and moreover $T^*1 = 0$. So $(1, 0) \in Graph(T_0^*)$. For any $x \in [0, 1]$, and $f \in \mathcal{D}$ we have

$$|f(x)| = \left| \int_0^x \int_0^1 f''(s)dsdt \right| \leq \int_0^x \int_0^1 |f''(s)|dsdt$$

$$\leq \int_0^1 \int_0^1 |f''(s)|dsdt = \int_0^1 |f''(s)|ds \leq \|T_0 f\|.$$
In particular if \(\| T_0 f \| \leq \frac{1}{2}; \) then \(|f(x)| \leq \frac{1}{2}, \forall x \in [0, 1], \) so \(|-f(x)| \geq \frac{1}{2} \) and \(\| 1 - f \| \geq \frac{1}{2}. \) So in all cases we have

\[
\| 1 - f \|^2 + \| T_0 f - 0 \|^2 \geq \frac{1}{4}.
\]

So \((1, 0) \notin \overline{\text{Graph}T_0} \) and \(T \) is not essentially self-adjoint.

\(T_0^* f = -f'' \), with

\[
\mathcal{D}(T_0^*) = H^2([0, 1]) = \{ f \in C^1([0, 1]) : f'' \in L^2([0, 1]) \}.
\]
Definition

Let $A : \mathcal{D}(A) : \rightarrow X, \mathcal{D}(A) \subset X$ be a closed linear operator in some Hilbert space X. Then

$$\rho(A) = \{ \lambda \in \mathbb{C} | A - \lambda \text{ has a bounded inverse} \}.$$

Is the resolvent set and

$$\sigma(A) = \mathbb{C}\setminus \rho(A),$$

the spectrum of A and $R_\lambda(A) = (A - \lambda)^{-1}$ is the inverse of $A - \lambda$.
The spectrum of a closed linear operator $A : \mathcal{D}(A) \to X, \mathcal{D}(A) \subset X$, decomposes into the following components

1. $\sigma_p(A) = \{ \lambda \in \mathbb{C} | \ker(A\lambda) \neq \{0\} \}$. It is called the point spectrum or set of eigenvalues of A. Every $x \in \ker(A - \lambda) \setminus \{0\}$ is called eigenvectors of A with eigenvalue $\lambda \in \sigma_p(A)$.

2. $\sigma_r(A) = \{ \lambda \in \mathbb{C} | \ker(A - \lambda) = \{0\}, \overline{\text{Range}(A - \lambda)} \neq X \}$. Is called the residual spectrum of A.

3. $\sigma_c(A) = \{ \lambda \in \mathbb{C} | \ker(A - \lambda) = \{0\}; \text{range}(A - \lambda) \neq X; \text{Range}(A - \lambda) = X \}$. Is called continuous spectrum.
For any closed operator $A : \mathcal{D}(A) \subset X \to X$, we have the following disjoint decomposition

$$\sigma(A) = \sigma_p(A) \cup \sigma_r(A) \cup \sigma_c(A).$$
Others decomposition of the spectrum exists in case $A = A^*$.

1. Lebesgue decomposition $\sigma_{pp}(A) = \sigma_{p}(A)$ pure point spectrum,
 $$\sigma_c(A) = \sigma_{sc}(A) \cup \sigma_{ac}(A).$$

2. $\sigma_{disc}(A) = \{\lambda; \text{isolated eigenvalue of } A \text{ with finite multiplicity}\}$
 $$\sigma_{ess}(A) = \sigma(A) \setminus \sigma_{disc}(A).$$
Example: $M_f : L^2(M, \mu) \to L^2(M, \mu)$. Let $\lambda \in \mathbb{C}$, then

$\lambda - A$ is injective

$\Leftrightarrow \{ \varphi \in L^2(M, \mu), (\lambda - f(x))\varphi(x) = 0 \text{ a.e.} \Rightarrow \varphi(x) = 0 \text{ a.e.} \}$

$\Leftrightarrow \lambda - f(x) \neq 0 \text{ a.e.} \Leftrightarrow \mu(\{ x \in M \mid f(x) = \lambda \}) = 0.$

$\sigma_p(M_f) = \{ \lambda \in \mathbb{C} \mid \mu(\{ x \in M \mid f(x) = \lambda \}) > 0 \}.$
Let $\lambda \in \mathbb{C} \setminus \sigma_p(M_f)$. So, $M_f - \lambda 1_M$ has an inverse:

$$(M_f - \lambda 1_M)\psi = \varphi \iff (f - \lambda 1_M)\psi = \varphi(x) \text{ a.e.} \iff \psi(x) = \frac{1}{f(x) - \lambda} \varphi \text{ a.e.}$$

So

$$(M_f - \lambda 1_M)^{-1} = M \frac{1}{f - \lambda},$$

with domain

$$D = \{\varphi \in L^2(M, \mu) | M \frac{1}{f - \lambda} \varphi \in L^2(M, \mu)\}.$$

$M \frac{1}{f - \lambda}$ is bounded $\iff \frac{1}{f - \lambda} \in L^\infty.$

So

$$\varphi(M_f) = \{\lambda \in \mathbb{C} | \exists K > 0 \text{ s.t. } |\lambda - f(x)| \geq K \text{ a.e.}\}.$$
Let $\lambda \in \mathbb{C} \setminus (\sigma_p(A) \cup \varrho(A))$. So \(\mu(\{x \in M \mid f(x) = \lambda\}) = 0 \), but on the other hand \(\mu(\{x \in M \mid |\lambda - f(x)| < \varepsilon\}) > 0 \), for every \(\varepsilon > 0 \). Is the range of \((M_f - \lambda 1_M)\) dense or not? Let for \(n \in \mathbb{N} \),

\[
E_n = \{x \in M \mid f(x) - \lambda \geq \frac{1}{n}\}.
\]

For every \(\psi \in L^2(M, \mu) \), we have \(\chi_{E_n} \psi \) is the image under \((M_f - \lambda 1_M) \); \(\vdots \) of \(\frac{1}{f(x) - \lambda} \chi_{E_n}(x) \psi(x) \in L^2(M, \mu) \). We have \(\chi_{E_n} \psi \) converges pointwise to \(\psi \), so by dominated convergence theorem, we get convergence in \(L^2 \). So, the range of \((M_f - \lambda 1_M)\) is dense. So

\[
\sigma_r(M_f) = \emptyset.
\]
Lemma

Let $A : \mathcal{D}(A) \to X, \mathcal{D} \subset X$, be a closed linear operator in Hilbert space X. Then

$$\varrho(A^*) = \varrho(A) \quad \text{and} \quad \sigma(A^*) = \sigma(A).$$
Proposition

Let $A : D(A) \to X, D \subset X$ be self-adjoint. Then

1. $\sigma(A) \subset \mathbb{R}$.
2. $\sigma_r(A) = \emptyset$.
3. If 0 is not in the spectrum of A, then $A^{-1} : A(D(A)) \to X$ is self-adjoint.
Proof:

1. \(\sigma(A) = \overline{\sigma(A)} \).
2. If \(\ker(A - \lambda) = \{0\} \), then

\[
\overline{(A - \lambda)(\mathcal{D}(A))} = \left((A - \lambda)(\mathcal{D}(A)) \right)^{\perp \perp} = (\ker(A - \lambda))^\perp = X,
\]

thus \(\sigma_r(A) = \emptyset \).
Theorem

Let A be a self-adjoint operator. Then $\lambda \in \sigma(A)$ if and only if there exists a sequence $\{u_n\}_n \subset D(A)$, such that $\|u_n\| = 1$ and $\|(A - \lambda)u_n\| \to 0$ as $n \to +\infty$.
Proof: Let $\lambda \in \sigma(A)$. Two cases arises:

1. $\ker(A - \lambda) \neq \{0\}$ i.e λ is an eigenvalue. Let f be an eigenvector. Then let $u_n = f$ for any n with $\|f\| = 1$.

2. $\ker(A - \lambda) = \{0\}$. Then $\text{Ran}(A - \lambda)$ is dense but not equal to X, so $(A - \lambda)^{-1}$ exist but it is unbounded.

Consequently, if there exists a sequence

$\{v_n\}_n \subset \mathcal{D}((A - \lambda)^{-1}), \|v_n\| = 1$ such that

$$\| (A - \lambda)^{-1}v_n \| \rightarrow \infty.$$

Let $u_n = [(A - \lambda)^{-1}v_n], \| (A - \lambda)^{-1}v_n \|^{-1}$, then

$\{u_n\}_n \subset \mathcal{D}(A), \|u_n\| = 1$, and

$$\| (A - \lambda)u_n \| = \|v_n\| \| (A - \lambda)^{-1}v_n \|^{-1} \rightarrow 0.$$
Conversely: Let \(\lambda \in \varrho(A) \). Then there exists \(M > 0 \), such that for any \(u \in X \)

\[
\| R_\lambda(A)u \| \leq M \| u \| .
\]

Let \(v = R_\lambda(A)u \), for \(v \in D(A) \) so that

\[
\| v \| \leq M \| (A - \lambda)v \| ,
\]

and thus no sequence having the properties described can exist.
Definition

$B : \mathcal{D}(B) \to X$ is called A bounded with respect to $A : \mathcal{D} \to X$ densely defined operator if

1. $\mathcal{D}(A) \subset \mathcal{D}(B)$
2. There exists $a, b \in [0, \infty)$; $\forall x \in \mathcal{D}(A)$:

$$\| Bx \| \leq a \| Ax \| + b \| x \| .$$
Kato-Rellich Theorem

Theorem

Let $A : \mathcal{D}(A) \to X, \mathcal{D}(A) \subset X$ be a selfadjoint operator on some Hilbert space X and $B : \mathcal{D}(A) \to X$ be symmetric and A-bounded with relative bound < 1. Then

$$A + B : \mathcal{D}(A) \to X$$

is selfadjoint.
First we note that $A + B : \mathcal{D}(A) \to X$ is symmetric as

$$\forall x, y \in \mathcal{D}(A) : \langle (A + B)x, y \rangle = \langle Ax, y \rangle + \langle Bx, y \rangle = \langle x, Ay \rangle + \langle x, By \rangle = \langle x, (A + B)y \rangle.$$

Let $x \in \mathcal{D}(A)$ and $\eta \in \mathbb{R}\{0\}$. Then

$$\| (A + i\eta)x \|^2 = \| Ax \|^2 + \eta^2 \| x \|^2.$$

Implies that for $x = (A + i\eta)^{-1}y, y \in X$:

$$\| A(A + i\eta)^{-1}y \| < \| y \| \text{ and } \| (A + i\eta)^{-1}y \| \leq \frac{1}{|\eta|} \| y \|$$

$$\Rightarrow \| B(A + i\eta)^{-1}y \| \leq a \| A(A + i\eta)^{-1}y \| + b \| (A + i\eta)^{-1}y \|$$

$$< a \| y \| + \frac{b}{\eta} \| y \|.$$

H. Najar
Introduction to spectral theory of unbounded operators.
So by Neumann Theorem $C = 1 + B(A + i\eta)^{-1}$ is invertible and $\text{range}(C) = X$. As $(A + i\eta)\mathcal{D}(A) = X$, we have

$$X = C(A + i\eta)(\mathcal{D}(A)) = (A + B + i\eta)(\mathcal{D}(A)).$$

Thus $A + B$ is self-adjoint operator.
Remark

It can be proved that if A is essentially selfadjoint operator and $B : \mathcal{D}(A) \rightarrow X$ is symmetric with A-bound less than one, then $A + B : \mathcal{D} \rightarrow X$ is e.s.a. and

$$A + B = \overline{A} + \overline{B}.$$

Theorem

Let A be a selfadjoint operator, with domain $\mathcal{D}(A)$ and B a compcat operator. Then $A + B$ is a selfadjoint operator on domain $\mathcal{D}(A)$ and

$$\sigma_{\text{ess}}(A) = \sigma_{\text{ess}}(A + B).$$
If $V \in L^2(\mathbb{R}^3) + L^\infty(\mathbb{R}^3)$ is real valued. Then

$$H = -\Delta + M_V,$$

is selfadjoint on $\mathcal{D}(-\Delta) = W^{2,2}(\mathbb{R}^3)$ and e.s.a. on $C_0^\infty(\mathbb{R}^3)$.

Lemma

$\forall f \in W^{2,2}(\mathbb{R}^3), \forall a > 0, \exists b \in \mathbb{R}$

$$\|f\|_\infty \leq a\|\Delta f\|_2 + b\|f\|_2.$$
Let $a(\cdot, \cdot)$ be a sesquilinear form defined on a dense domain $\mathcal{D}(a)$. We say that a is \textbf{semibounded}, if there exists $m \in \mathbb{R}$ such that

$$a(u, u) \geq m \| x \|^2 \quad \forall u \in \mathcal{D}(a).$$

If the largest m is positive, we say that that is \textbf{definite positive}.

A symmetric operator S is said to be bounded from below if

$$\langle Su, u \rangle \geq m \| u \|^2, \forall u \in \mathcal{D}(S),$$

with some $m \in \mathbb{R}$.
Remark

The inner product

$$\langle u, v \rangle_a = (1 - m)\langle u, v \rangle + a(u, v),$$

satisfies

$$\| u \|_a \geq \| u \|, \; \forall u \in \mathcal{D}(a).$$
Theorem

Let \((H, \langle \cdot, \cdot \rangle)\) be a Hilbert space and let \(H_1\) be a dense subspace of \(H\). Assume that an inner product \(\langle \cdot, \cdot \rangle_1\) is defined on \(H_1\) in such a way that \((H_1, \langle \cdot, \cdot \rangle_1)\) is a Hilbert space and with some \(m > 0\) we have

\[
m \| f \|^2_1 \leq \| f \|^2, \forall f \in H_1.
\]

Then there exists a unique self-adjoint operator \(T\) on \(H\) such that for \(\mathcal{D}(T) \subset H_1\) and \(\langle Tf, g \rangle = \langle f, g \rangle_1\), for all \(f \in \mathcal{D}(T), g \in H_1\), where \(T\) is bounded from below with lower bound \(m\). The operator \(T\) can be defined by the equalities

\[
\mathcal{D}(T) = \{ f \in H_1 : \exists \tilde{f} \in H, s.t \langle f, g \rangle_1 = \langle \tilde{f}, g \rangle \forall g \in H_1 \}, \quad (11)
\]

and \(Tf = \tilde{f}\), where \(\mathcal{D}(T)\) is dense in \(H_1\) w.r.t. \(\| \cdot \|_1\).
Proof: First we check if such an operator defined by (11) exists since \(H_1 \) is dense \(\bar{f} \) exists and is uniquely determined. The mapping \(f \rightarrow \bar{f} \) is linear and so (11) define a linear operator, we denote it by

\[
T : (H, \langle \cdot, \cdot \rangle) \rightarrow (H, \langle \cdot, \cdot \rangle), \ D(T) \subset H_1.
\]

But we can also define

\[
T_0 : (H_1, \langle \cdot, \cdot \rangle_1) \rightarrow (H, \langle \cdot, \cdot \rangle)
\]

with \(D(T) = D(T_0) \). Then for all \(f \in D(T) \) we have

\[
Tf = T_0 f,
\]

and for all \(f \in H_1 \) we have by (11)

\[
\langle f, g \rangle_1 = \langle \bar{f}, g \rangle = \langle T_0 f, g \rangle.
\]
Also, for all $f \in \mathcal{D}(T), g \in H_1$ we have

$$\langle T_0 f, g \rangle = \langle f, T_0^* g \rangle_1 \iff \langle f, g \rangle_1 = \langle f, T_0^* g \rangle_1 \Rightarrow T_0^* g = g,$$

for all $g \in H_1$ i.e $\mathcal{D}(T_0^*) = H_1$. Furthermore, define

$$J : (H, \langle \cdot, \cdot \rangle) \rightarrow (H_1, \langle \cdot, \cdot \rangle)$$

with $\mathcal{D}(J) = H_1$ and $Jf = f$. Then for all $g \in H_1, f \in \mathcal{D}(T)$ we have

$$\langle f, Jg \rangle_1 = \langle f, g \rangle_1 = \langle f, T_0^* g \rangle_1.$$

Thus $J = T_0^*$.

H. Najar
Introduction to spectral theory of unbounded operators.
Assume that J is closed, then $T_0^* = J$ is densely defined. Thus, since $\mathcal{D}(T) = \mathcal{D}(T_0)$, we have that T is densely defined in H_1 w.r.t. $\| \cdot \|_1$ and consequently in H w.r.t. $\| \cdot \|$. By (11) we have for all $f, g \in \mathcal{D}(T)$

$$\langle Tf, g \rangle = \langle f, g \rangle_1 = \overline{\langle g, f \rangle_1}$$

$$= \langle Tg, f \rangle \text{ as } g \in \mathcal{D}(T)$$

$$= \langle f, Tg \rangle.$$

So T is symmetric.
Assume that selfadjointness of T follows if $\text{Range}(T) = H$. Let $f \in \mathcal{H}$ be arbitrary. Then

$$g \mapsto \langle f, g \rangle$$

is a continuous linear functional on H_1 because

$$|\langle f, g \rangle| \leq \|f\| \|g\| \leq m^{-1/2} \|f\| \cdot \|g\|_1.$$

Therefore there exists an $\overline{f} \in H_1$ such that

$$\langle f, g \rangle = \langle \overline{f}, g \rangle_1,$$

for all $g \in H_1$ by Riesz Theorem. This means that $\overline{f} \in \mathcal{D}(T)$ and $f = T\overline{f}$. The semi-boundedness follows from

$$\langle Tf, f \rangle = \langle f, f \rangle_1 \geq m \|f\|^2, \forall f \in \mathcal{D}(T).$$
Uniqueness. If S satisfies $\mathcal{D}(S) \subset H_1$ and

$$\langle Sf, g \rangle = \langle f, g \rangle_1.$$

Then $S = T|_{\mathcal{D}(S)}$, i.e $S \subseteq T \subseteq T^* \subseteq S^*$. If S is self adjoint this implies

$$S = T.$$
Theorem

Assume H is a Hilbert space. \mathcal{D} is a dense subspace of H and $s(\cdot, \cdot)$ is a semi-bounded symmetric sesquilinear form on \mathcal{D} with lower bound m. Let $\| \cdot \|_s$ be compatible with $\| \cdot \|$. Then there exists a unique semi-bounded selfadjoint operator T with lower bound m such that $\mathcal{D}(T) \subseteq H$ and $\langle T f, g \rangle = s(f, g)$ for all $f \in \mathcal{D} \cap \mathcal{D}(T), g \in \mathcal{D}$. We have

$$\mathcal{D}(T) = \{ f \in H_s : \exists \bar{f} \in H, \text{s.t.} s(f, g) = \langle \bar{f}, g \rangle \forall g \in \mathcal{D} \}. \quad (12)$$

Where $T f = \bar{f}$ for $f \in \mathcal{D}(T). H_s$ is the completion of $(\mathcal{D}, \| \cdot \|_s)$.

H. Najar
Introduction to spectral theory of unbounded operators.
Replace \((H_1, \langle \cdot, \cdot \rangle)\) by \((H_s, \langle \cdot, \cdot \rangle)\) in the last theorem. Then we obtain exactly one self adjoint operator \(T_0\) such that \(\mathcal{D}(T_0) \subseteq H_s\) and

\[
\langle T_0 f, g \rangle = \langle f, g \rangle_s = (1 - m) \langle f, g \rangle + s(f, g),
\]

for all \(f \in \mathcal{D}(T_0), g \in H_s\). Also, \(T_0\) is semi-bounded with lower bound 1 because

\[
\langle f, T_0 f \rangle = \langle f, f \rangle_s = (1 - m) \langle f, f \rangle + s(f, f) \geq (1 - m) \| f \|^2 + m \| f \|^2 = \| f \|^2.
\]
Define $T = T_0 - (1 - m)$. Then

$$\langle Tf, f \rangle = \langle (T_0 - (1 - m))f, f \rangle$$

$$= \langle T_0 f, f \rangle - \langle (1 - m)f, f \rangle$$

$$\geq \| f \|^2 - \| f \|^2 + m \| f \|_s^2$$

$$= m \| f \|_s^2 .$$
1 $\mathcal{D}(T) \subseteq H_s$ follows easily from $\mathcal{D}(T_0) \subseteq H_s$. This because shifting an operator by a constant does not change the domain.

2

$$\langle Tf, g \rangle = \langle [T_0 - (1 - m)]f, g \rangle$$
$$= \langle T_0f, g \rangle - \langle (1 - m)f, g \rangle$$
$$= (1 - m)\langle f, g \rangle + s(f, g) - \langle (1 - m)f, g \rangle$$
$$= s(f, g)$$

for all $f \in \mathcal{D} \cap \mathcal{D}(T_0), g \in \mathcal{D}$. **Uniqueness** of T follows from uniqueness of T_0.

H. Najar
Introduction to spectral theory of unbounded operators.
Theorem

Let S be a semi-bounded symmetric operator with lower bound $m > 0$. Then there exists a semi-bounded self-adjoint extension of S with lower bound m. If we define

$$s(f, g) = \langle Sf, g \rangle, \forall f, g \in \mathcal{D}(S),$$

for H_s, the completion of $(\mathcal{D}(S), \| \cdot \|_s)$ then we have the operator T defined by

$$\mathcal{D}(T) = \mathcal{D}(S^*) \cap H_s$$

and $Tf = S^*f$ for all $f \in \mathcal{D}(T)$ is a selfadjoint extension of S with lower bound m. The operator T is the only selfadjoint extension of S having the property $\mathcal{D}(T) \subseteq H_s$.

H. Najar

Introduction to spectral theory of unbounded operators.
Proof: By the last theorem we know there exists a unique selfadjoint operator T with $\mathcal{D}(T) \subseteq H_s$ and

$$\langle Tf, g \rangle = s(f, g) = \langle Sf, g \rangle, \forall f \in \mathcal{D}(S) \cap \mathcal{D}(T),$$

and m is lower bound for T. We have by (12)

$$\mathcal{D}(T) = \{ f \in H_s : \exists \bar{f} \in H, \bar{s}(f, g) = \langle \bar{f}, g \rangle \forall \langle, \forall g \in \mathcal{D}(S) \}. $$
Let \((f_n)_n \in \mathcal{D}(S)\) such that
\[
\|f_n - f\| \to 0.
\]

Then we obtain
\[
\bar{s}(f, g) = \lim_{n \to \infty} \bar{s}(f_n, g) = \lim_{n \to \infty} (\langle f_n, g \rangle_s - (1 - m)\langle f_n, g \rangle) \\
= \lim_{n \to \infty} ((1 - m)\langle f_n, g \rangle + s(f_n, g) - (1 - m)\langle f_n, g \rangle) \\
= \lim_{n \to \infty} s(f_n, g) = \lim_{n \to \infty} \langle Sf_n, g \rangle \\
= \lim_{n \to \infty} \langle f_n, Sg \rangle = \lim_{n \to \infty} \langle f, Sg \rangle,
\]

because \(\| \cdot \|_s\) is compatible with \(\| \cdot \|\). So we can replace \(\bar{s}(f, g)\) with \(\langle f, Sg \rangle\).
We have to show T is an extension of S:

1. From definition of $\mathcal{D}(T) = \mathcal{D}(S^*) \cap H_s$. Also $T = S^* \big|_{\mathcal{D}(T)}$.

2. Since S is symmetric then $S \subseteq S^*$. Also $S \subseteq H_s$ by construction. Thus

$$\mathcal{D}(S) \subseteq \mathcal{D}(S^*) \cap H_s = \mathcal{D}(T).$$

Furthermore, since S is symmetric then $S = S^* \big|_{\mathcal{D}(S)}$ which means that, by 1, $S = T \big|_{\mathcal{D}(S)}$. Thus we have $S \subseteq T$.

H. Najar

Introduction to spectral theory of unbounded operators.
(Uniqueness) Let A be an arbitrary self adjoint extension of S such that $\mathcal{D}(A) \subseteq H_s$. Then since $S \subseteq A$ we have $A \subseteq S^*$ which means $\mathcal{D}(A) \subseteq \mathcal{D}(S^*)$ and $A = S^* |_{\mathcal{D}(A)}$. Also,

$$\mathcal{D}(T) = \mathcal{D}(S^*) \cap H_s,$$

which means $\mathcal{D}(A) \subset \mathcal{D}(T)$ and so

$$A = S^* |_{\mathcal{D}(A)} = T |_{\mathcal{D}(A)}.$$

Thus $A \subseteq T$ which implies $T = T^* \subseteq A^* = A$ and so $A = T$.

H. Najar
Introduction to spectral theory of unbounded operators.
Lemma

Let T be a self-adjoint operator and densely defined. For $\lambda \in \mathbb{C} \setminus \mathbb{R}$, the operator R_λ is everywhere defined on X, and the norm is estimated by

$$\|R_\lambda\| \leq \frac{1}{|\text{Im}\lambda|}.$$
Proof: For $\lambda = x + iy$ and $v \in \mathcal{D}(T),$

$$| (T - \lambda)v |^2$$

$$= | (T + x)v |^2 + \langle (T - x)v, iyv \rangle + \langle iyv, (T - x)v \rangle + y^2 | v |^2$$

$$= | (T + x)v |^2 - iy \langle (T - x)v, v \rangle + iy \langle v, (T - x)v \rangle + y^2 | v |^2$$

$$= | (T - x)v |^2 + y^2 | v |^2 \geq y^2 | v |^2 .$$

Thus, for $y \neq 0, (T - \lambda)v \neq 0.$ On $(T - \lambda)\mathcal{D}(T),$ there is an inverse R_{λ} of $T - \lambda,$ and for $w = (T - \lambda)v, v \in \mathcal{D}(T)$

$$| w | = | (T-\lambda)v | \geq | y | \cdot | v | = | y | \cdot | R_{\lambda}(T-\lambda)v | = | y | \cdot | R_{\lambda}w |$$

which gives

$$\| R_{\lambda}w \| \leq \frac{1}{| Im\lambda |} \cdot \| w \| \text{ (for } (T - \lambda)v, v \in \mathcal{D}(T)) .$$
Thus, the operator norm on \((T - \lambda)\mathcal{D}(T)\) satisfies \(\| R_\lambda \| \leq \frac{1}{\text{Im} \lambda}\) as claimed. It remains to show that \((T - \lambda)\mathcal{D} = X\), the hole space. If
\[
\langle (T - \lambda)v, w \rangle = 0, \quad \forall v \in \mathcal{D}(T).
\]
So \(T - \lambda\) can be defined on \(w\) as \((T - \lambda)^*w = 0\), this gives \(Tw = \overline{\lambda}w\), so \(w = 0\). Thus, \((T - \lambda)\mathcal{D}(T)\) is dense in \(X\). As \(T\) is closed we get it is equal to \(X\).
Definition

Let $x \in \mathcal{A}$ and λ an isolated point of $\sigma(x)$. Let Γ_{λ_0} be an admissible contour i.e a closed contour around λ_0 such that the closure of the region bounded by Γ_{λ_0} intersects $\sigma(x)$ only at λ_0,

$$P_{\lambda_0} = \frac{1}{2\pi i} \oint_{\Gamma_{\lambda_0}} R_\lambda(A) d\lambda,$$

is called Riesz integral for x and λ_0.

H. Najar
Introduction to spectral theory of unbounded operators.

Perturbation theory
Lower bounded operators and quadratic forms

Spectrum of unbounded operators on Hilbert spaces
Proposition: Let P_{λ_0} be a Riesz integral for x and λ_0.

1. P_{λ_0} is a projection.
2. $\text{Ker}(x - \lambda_0) \subset \text{Ran} P_{\lambda_0}$.
3. If \mathcal{A} is a Hilbert space and x is self adjoint, then P_{λ_0} is orthogonal projection onto $\text{ker}(x - \lambda_0)$.

H. Najar
Introduction to spectral theory of unbounded operators.
Proof: (1) Let Γ_{λ_0} and $\tilde{\Gamma}_{\lambda_0}$ be two admissible contours for defining P_{λ_0}, we suppose that Γ_{λ_0} is contained in the interior of the region bounded by $\tilde{\Gamma}_{\lambda_0}$.

\[
P_{\lambda_0}^2 = \frac{1}{(2\pi i)^2} \oint_{\Gamma_{\lambda_0}} d\lambda \oint_{\tilde{\Gamma}_{\lambda_0}} d\mu R_{\lambda}(x)R_{\mu}(x)d\mu
\]

\[
= \frac{1}{(2\pi i)^2} \oint_{\Gamma_{\lambda_0}} d\lambda \oint_{\tilde{\Gamma}_{\lambda_0}} (\mu - \lambda)^{-1}[R_{\lambda}(x) - R_{\mu}(x)]d\mu.
\]

Using the residue theorem, we get:

\[
\oint_{\Gamma_{\lambda_0}} d\lambda \oint_{\tilde{\Gamma}_{\lambda_0}} (\mu - \lambda)^{-1}R_{\lambda}(x)d\mu = 2\pi i \oint_{\Gamma_{\lambda_0}} R\lambda(x)d\lambda.
\]

For the second integral we get that

\[
\oint_{\Gamma_{\lambda_0}} d\lambda \oint_{\tilde{\Gamma}_{\lambda_0}} (\mu - \lambda)^{-1}R_{\mu}d\mu = \oint_{\tilde{\Gamma}_{\lambda_0}} R_{\mu}(x)d\mu \oint_{\Gamma_{\lambda_0}} (\mu - \lambda)^{-1}d\lambda = 0.
\]
(2). Let \(f \in \ker(x - \lambda_0) \). Then for \(\lambda \neq \lambda_0 \)

\[
(x - \lambda_0)^{-1}f = (\lambda_0 - \lambda)^{-1}f.
\]

We show that \(P_{\lambda_0}f = f \), so \(f \in \text{Ran}P_{\lambda_0} \). By the definition of \(P_{\lambda_0} \) we find that

\[
P_{\lambda_0}f = \frac{1}{2\pi} \oint_{\Gamma_{\lambda_0}} (x - \lambda)^{-1}f d\lambda \quad (15)
\]

\[
= \frac{1}{2\pi} \oint_{\Gamma_{\lambda_0}} \oint_{\Gamma_{\lambda_0}} (\lambda_0 - \lambda)^{-1}f d\lambda = f \quad (16)
\]

(3) Let \(x \) be an Hilbert space and suppose that \(x = x^* \) (Exercise: show that \(P_{\lambda_0} = P_{\lambda_0}^* \)). We must show now that \(\text{Ran}P_{\lambda_0} \subset \ker(x - \lambda_0) \). We compute

\[
(x - \lambda_0)P_{\lambda_0} = \frac{1}{2\pi} \oint_{\Gamma_{\lambda_0}} (x - \lambda_0)(x - \lambda)^{-1}d\lambda \quad (17)
\]

H. Najar

Introduction to spectral theory of unbounded operators.
Consider U_{λ_0} denote the interior of Γ_{λ_0}. On $U_{\lambda_0}\setminus\{\lambda_0\}$, the operator $(\lambda - \lambda_0)(x - \lambda)^{-1}$ is analytic, operator and satisfies

$$|\lambda_0 - \lambda\|(x - \lambda)^{-1}\| \leq |\lambda_0 - \lambda|d(\lambda, \sigma(x))^{-1}. \quad (19)$$

We can choose Γ_{λ_0}, so that λ_0 is the closest point of $\sigma(x)$ to Γ_{λ_0}. So $|\lambda_0 - \lambda\|(x - \lambda)^{-1}\| \leq 1$ and this function is uniformly bounded on $U_{\lambda_0}\setminus\{\lambda_0\}$. It follows that $(\lambda_0 - \lambda)(x - \lambda)^{-1}$ extends to analytic function on U_{λ_0} so by Cauchy theorem the integral(19) vanishes. This gives that $\text{Ran}P_{\lambda_0} \subset \text{Ker}(x - \lambda_0)$.
References:
Thanks